N ov 1 99 2 GENERALIZED DRINFELD - SOKOLOV HIERARCHIES AND W - ALGEBRAS *

نویسنده

  • L. Fehér
چکیده

We review the construction of Drinfeld-Sokolov type hierarchies and classical W-algebras in a Hamiltonian symmetry reduction framework. We describe the list of graded regular elements in the Heisenberg subalgebras of the nontwisted loop algebra ℓ(gl n) and deal with the associated hierarchies. We exhibit an sl 2 embedding for each reduction of a Kac-Moody Poisson bracket algebra to a W-algebra of gauge invariant differential polynomials. In this talk I wish to describe some recent results on the construction of KdV type hierarchies and classical W-algebras. (Proofs and further details can be found in [1], [2].) First I review the relevant aspects of the Drinfeld-Sokolov (DS) construction of KdV type hierarchies [3] and the corresponding W-algebras concentrating on the simplest case. I shall raise some questions concerning the possible generalizations, which will be (partially) answered later in the talk. As explained in detail in [1], the DS construction can be naturally understood in the framework of the Hamiltonian Adler-Kostant-Symes approach to integrable systems (e.g. [4]). The hierarchy results from a local symmetry reduction of the commuting family of Hamiltonian systems generated by the ad *-invariant Hamiltonians on the dual A * of a Lie algebra A of the form A = ℓ(G) := G ⊗ C[λ, λ −1 ], (1.1) where G itself is a centrally extended loop algebra. The space A * carries the family of compatible R Lie-Poisson brackets induced by the classical r-matrices R k ∈ End(A) given by R k := (P + − P −) • λ k , where P ± ∈ End(A) project onto the subalgebras A ± containing positive and negative powers of the spectral parameter λ, respectively, (see [5]). For simplicity, let us concentrate on the case when G = gl n ∧ , the central extension of the algebra of smooth loops in 0 dx trX ′ (x)Y (x) .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Drinfeld - Sokolov Hierarchies , Quantum Rings , andW - Gravity

We investigate the algebraic structure of integrable hierarchies that, we propose, underlie models of W-gravity coupled to matter. More precisely, we concentrate on the dispersionless limit of the topological subclass of such theories, by making use of a correspondence between Drinfeld-Sokolov systems, principal sℓ(2) embeddings and certain chiral rings. We find that the integrable hierarchies ...

متن کامل

Solutions to WDVV from generalized Drinfeld-Sokolov hierarchies

The dispersionless limit of generalized Drinfeld-Sokolov hierarchies associated to primitive regular conjugacy class of Weyl group W (g) is discussed. The map from these generalized Drinfeld Sokolov hierarchies to algebraic solutions to WDVV equations has been constructed. Example of g = D4 and [w] = D4(a1) is considered in details and corresponding Frobenius structure is found.

متن کامل

Extensions of the matrix Gelfand-Dickey hierarchy from generalized Drinfeld-Sokolov reduction

The p × p matrix version of the r-KdV hierarchy has been recently treated as the reduced system arising in a Drinfeld-Sokolov type Hamiltonian symmetry reduction applied to a Poisson submanifold in the dual of the Lie algebra ĝlpr ⊗CI [λ, λ]. Here a series of extensions of this matrix Gelfand-Dickey system is derived by means of a generalized Drinfeld-Sokolov reduction defined for the Lie algeb...

متن کامل

Regular Conjugacy Classes in the Weyl Group and Integrable Hierarchies

Generalized KdV hierarchies associated by Drinfeld-Sokolov reduction to grade one regular semisimple elements from non-equivalent Heisenberg subalgebras of a loop algebra G ⊗ C[λ, λ −1 ] are studied. The graded Heisenberg subalgebras containing such elements are labelled by the regular conjugacy classes in the Weyl group W(G) of the simple Lie algebra G. A representative w ∈ W(G) of a regular c...

متن کامل

W-Algebra Symmetries of Generalised Drinfel’d-Sokolov Hierarchies

Using the zero curvature formulation, it is shown that W-algebra transformations are symmetries of corresponding generalised Drinfel’d-Sokolov hierarchies. This result is illustrated with the examples of the KdV and Boussinesque hierarchies, and the hierarchy associated to the Polyakov-Bershadsky W-algebra.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1992